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ABSTRACT: With increasing interest in explaining machine learning (ML) models, this paper synthesizes many topics re-
lated to ML explainability. We distinguish explainability from interpretability, local from global explainability, and feature im-
portance versus feature relevance. We demonstrate and visualize different explanation methods, how to interpret them, and
provide a complete Python package (scikit-explain) to allow future researchers and model developers to explore these explain-
ability methods. The explainability methods include Shapley additive explanations (SHAP), Shapley additive global explana-
tion (SAGE), and accumulated local effects (ALE). Our focus is primarily on Shapley-based techniques, which serve as a
unifying framework for various existing methods to enhance model explainability. For example, SHAP unifies methods like lo-
cal interpretable model-agnostic explanations (LIME) and tree interpreter for local explainability, while SAGE unifies the dif-
ferent variations of permutation importance for global explainability. We provide a short tutorial for explaining ML models
using three disparate datasets: a convection-allowing model dataset for severe weather prediction, a nowcasting dataset for sub-
freezing road surface prediction, and satellite-based data for lightning prediction. In addition, we showcase the adverse effects
that correlated features can have on the explainability of a model. Finally, we demonstrate the notion of evaluating model im-
pacts of feature groups instead of individual features. Evaluating the feature groups mitigates the impacts of feature correla-
tions and can provide a more holistic understanding of the model. All code, models, and data used in this study are freely
available to accelerate the adoption of machine learning explainability in the atmospheric and other environmental sciences.
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1. Introduction

Machine learning algorithms (ML) are increasingly common
in the atmospheric sciences and are being used for severe
weather applications (e.g., Gagne et al. 2017; Lagerquist et al.
2017; Cintineo et al. 2020; Lagerquist et al. 2020; Flora et al.
2021; McGovern et al. 2023), ensemble postprocessing (e.g.,
Rasp and Lerch 2018), subfreezing road temperature prediction
(Handler et al. 2020), model parameterization (e.g., Brenowitz
et al. 2020), tropical cyclone prediction (e.g., Kumler-Bonfanti
et al. 2020), and climate modeling (e.g., Hernández et al. 2020).
A key advantage of ML models is their ability to leverage multi-
ple input features and learn useful multivariate relationships for
prediction, calibration, and postprocessing. However, many ML
models are considered “black boxes” in that the end user cannot
readily understand the internal workings of the model (McGovern
et al. 2019). We may not need to understand ML systems in all
circumstances, but in high-risk situations}like severe weather
forecasting}decision-makers want to know why a model came to
its prediction. To help build human forecasters trust in ML predic-
tions, it is essential to explain the “why” of an ML model’s output
in understandable terms and to create real-time visualizations of

these methods (Hoffman et al. 2017; Karstens et al. 2018; Jacovi
et al. 2021). Moreover, understanding a model’s inner workings
can identify strengths and weaknesses and possibly lead to im-
provements in the model.

The atmospheric science community is beginning to adopt ex-
plainability methods (e.g., Lakshmanan et al. 2015; Minokhin
et al. 2017; Herman and Schumacher 2018; Rasp and Lerch
2018; McGovern et al. 2019; Jergensen et al. 2020; Lagerquist
et al. 2020; Gagne et al. 2019; Handler et al. 2020; Hamidi et al.
2020; Mecikalski et al. 2021; Loken et al. 2022; Shield and Houston
2022; Mamalakis et al. 2022, 2023). Given the increasing interest
in model explainability, we synthesize recent research on
multiple explainability methods using ML models developed
for severe weather (Flora et al. 2021), subfreezing road sur-
face temperature (Handler et al. 2020), and lightning (Chase
et al. 2022, 2023). For example, we highlight the difference
between feature relevance (expected contribution to the model’s
output) and feature importance (expected contribution to the
model’s quality, that is, correspondence between model output
and the target; Murphy 1993); a distinction often neglected in the
literature. We demonstrate how to use and interpret explainabil-
ity methods with a code base developed by the authors (scikit-
explain;1 Flora and Handler 2022). Our contributions include
highlighting the distinctions between intepretability and explainabil-
ity (discussed below), local and global explainability, and feature
importance and relevance. Similar to Chase et al. (2022, 2023), we
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provide a tutorial approach to interpreting and demonstrat-
ing these explainability methods. This paper strives to pro-
vide a comprehensive understanding of model explainability,
even for those who may be new to the concept. We assume fa-
miliarity with ML methods and terminology and recommend
Chase et al. (2022, 2023) for novice readers. Chase et al. (2022,
2023) offers a great introduction to ML for operational meteo-
rology and provides open-source code for training and develop-
ing MLmodels.

Interpretability versus explainability

Many methods have been developed to understand black
box models better. In response, substantial research has
emerged on topics such as interpretable ML and explainable
artificial intelligence (XAI) (e.g., van Lent et al. 2004; Kim
et al. 2016; Adadi and Berrada 2018; Rudin 2018; Gilpin et al.
2018; Miller 2019; Linardatos et al. 2020; Molnar et al. 2020a;

Rudin et al. 2021). Given the nascency of these topics, the def-
initions of explainability and interpretability are inconsistent
throughout the literature, and many articles treat them inter-
changeably (Table 1). In this paper, we define these terms as
follows:

• Interpretability is the degree to which an entire model and its
components can be understood without additional methods.

• Explainability is the degree to which any partially interpret-
able or uninterpretable model (i.e., black boxes) can be ap-
proximately understood through post hoc methods (e.g.,
verification, visualizations of important features, or learned
relationships).

This distinction between interpretability and explainability is
needed since some in the ML and statistics community favor
producing interpretable models (i.e., restricting model com-
plexity beforehand to impose interpretability; Rudin 2018;

TABLE 1. A nonexhaustive list of definitions of interpretability and explainability provided in the literature. Many studies not
included here do not define the terms and use them interchangeably. These are partial quotes from each source, but quotation marks
are omitted for readability.

Source Interpretability Explainability

Kim et al. (2016) A method is interpretable if a user can
correctly and efficiently predict the
method’s results.

N/A (no distinction made)

Doshi-Velez and Kim (2017) The ability to explain or to present [the
model] in understandable terms to a
human.

Explaining the model after it is trained
with post hoc methods

Adadi and Berrada (2018) Interpretable systems are explainable if
their operations can be understood by
human[s].

N/A (no explicit definition provided, but
the terms are not treated
interchangeably)

Rudin (2018) An interpretable machine learning model
is constrained in model form so that it
is either useful to someone or obeys
structural knowledge of the domain
such as . . . the physical constraints
that come from domain knowledge.

Where a second (post hoc) model is
created to explain the black box
model

Gilpin et al. (2018) Describe the internals of a system in a
way which is understandable to
humans.

Models that are able summarize the
reasons for [black box] behavior . . .
or produce insights about the causes
of their decisions

Murdoch et al. (2019) The use of machine-learning models for
the extraction of relevant knowledge
about domain relationships contained
in data.

N/A (no distinction made)

Miller (2019) The degree to which a human can
understand the cause of a decision.

N/A (no distinction is made)

Linardatos et al. (2020) [Ability] to identify cause-and-effect
relationships within the system’s
inputs and outputs.

Explainability… is associated with the
internal logic and mechanics that are
inside a machine learning system

Molnar (2020) Adopts the definitions from Miller
(2019) and Kim et al. (2016).

N/A (no distinction is made; instead
distinguishes interpretability/
explainability from explanation where
explanation refers to explaining
individual predictions)

Rudin et al. (2021) An interpretable ML model obeys a
domain-specific set of constraints to
allow it to be more easily understood by
humans. These constraints can differ
dramatically depending on the domain.

Explaining a black box model with a
simpler model
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Rudin et al. 2021), while the general trend in the ML commu-
nity is to continue developing partially interpretable and black
box models and implementing post hoc methods to explain
them. Lipton (2016) defines a fully interpretablemodel as one that
has simulatability (the entire model can be considered at once),
decomposability (each component of the model is human under-
standable) and algorithmic transparency (one can understand how
the model was trained). A partially interpretable model may only
meet one of these criteria. Explainability can be further subdivided
into model-specific explainability (where the components of the
model can be used for the explanation) and model-agnostic ex-
plainability (where no components of themodel itself are used and
no assumption ismade about themodel structure).

Figure 1 provides an illustration of interpretability and ex-
plainability. Fully interpretable models do not require post hoc
explainability methods to improve understanding, while uninter-
pretable models have the most to gain from additional explana-
tion methods. For example, low-dimensional linear regression is
fully interpretable, and a shallow decision tree is partially inter-
pretable. In contrast, a deep neural network (DNN) or a dense
random forest is uninterpretable but can be approximately un-
derstood through external explanation methods. Explanation
methods can only approximate model behavior, as they would
otherwise be as incomprehensible as the black-box model itself.
We do not view this as a limitation of explanationmethods, as sug-
gested by other studies (e.g., Rudin 2018; Rudin et al. 2021), since
abstracting a complex model is required for human understanding.

For example, it is common in the weather community to replace
the full Navier–Stokes equations with conceptual models that are
more understandable (e.g., quasigeostrophic theory). However, the
model complexity controls the degree of explainability (Molnar
et al. 2019). As the number of features increases or their interac-
tions become more complex, the explanations for the behavior of
the ML model will become similarly complex and possibly less ac-
curate. It is uncertain how much progress can be made in compre-
hending complex, high-dimensional models through existing and
future explanation techniques (Fig. 1).

2. Data

The following sections briefly describe the three datasets used
in this study. They describe the feature engineering process, the
target variable, and the classification task.

a. Severe wind dataset

The severe wind dataset is derived from the output of the
2017–19 Warn-on-Forecast System (WoFS), which is an ex-
perimental 3-km ensemble that produces rapidly updating
forecast guidance at 0–6-h lead times. Additional details of
the WoFS are found in Wheatley et al. (2015), Jones et al.
(2016, 2020). The ML dataset contains features derived from
intrastorm and environmental variables extracted from within
30-min ensemble storm tracks (Flora et al. 2019, 2021; Table 2).
Environmental features are spatial averages (within a track) of

FIG. 1. Illustration of the relationship between understandability and model complexity. Fully interpretable models
have high intrinsic understandability, while partially interpretable or simpler black box models have the most to gain
from explainability methods. With increased dimensionality and nonlinearity, explainability methods can improve un-
derstanding. Still, there is considerable uncertainty about the ability of future explanation methods to improve the un-
derstandability of high-dimensional, highly nonlinear methods.
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the ensemble mean and standard deviation fields valid at the be-
ginning of the 30-min forecast period. Intrastorm features include
both the spatial average values of ensemble mean and standard
deviation fields (similar to environmental features) from time-
composited fields and the ensemble mean and standard deviation
of spatial 90th percentile of each ensemble member within a
storm track (meant to capture storm intensity). The target vari-
able is whether a severe wind report occurs within an ensemble
storm track. Although Flora et al. (2021) developed ML models
for all three severe hazards (wind, hail, tornadoes), we use only
the severe wind dataset in the present study since the severe wind
model was the most skillful of the three. The final dataset
has 91 features, 510 000 examples, and a 3.6% base rate.

b. Road surface dataset

The road surface dataset from Handler et al. (2020) spans two
cool seasons: 1 October 2016–31 March 2017 and 1 October 2017–
31 March 2018. Thirty features were used for training, includ-
ing near-surface variables from the High-Resolution Rapid
Refresh (HRRR) model, as well as derived features (Handler
et al. 2020, their Table 3). The variables were informed by
previous research that identified variables relevant for modu-
lating surface road temperatures (e.g., Crevier and Delage
2001). Hourly road surface temperature observations from
the Road Weather Information System (RWIS) sites were used
as the target variable for training. Each example was labeled be-
low or above freezing based on the temperature reported by
the RWIS site. The RWIS sites used are shown in Fig. 1a of
Handler et al. (2020). The final dataset has 30 features, 1 million
examples, and a 39.7% base rate.

c. Lightning dataset

The Storm Event Imagery (SEVIR; Veillette et al. 2020)
database is a spatiotemporal dataset curated on 10 000 storm

events. The SEVIR dataset has four Geostationary Environ-
mental Satellite System–16 (GOES-16) variables: visible re-
flectance (VIS), midtropospheric water vapor brightness
temperature (WV), infrared brightness temperature (IR),
and Geostationary Lightning Mapper (GLM) flashes. The
dataset also contains Next-Generation Radar (NEXRAD)
vertically integrated liquid (VIL). The SEVIR images are
largely located over thunderstorms and general convective
activity. Using these weather-centered imageries, Chase et al.
(2022, 2023) lowered the spatial resolution and then ex-
tracted spatial percentiles (0, 1, 10, 25, 50, 75, 90, 99, 100)
from the satellite variables (excluding lightning flashes) and
the radar-based VIL. The target is a binary variable indicating
whether at least one GLM flash is present in the image. Addi-
tional details on the dataset can be found in Chase et al. (2022,
2023). The final dataset has 36 features, 60000 examples, and a
50% base rate. It is worth noting that the SEVIR dataset is tai-
lored and not representative of lightning climatology.

3. Machine learning algorithms

This study uses classification logistic regression, random
forests, and neural network models available in the Python
sci-kit learn package (Pedregosa et al. 2011). Consistent with
Flora et al. (2021), Handler et al. (2020), and Chase et al.
(2023), we use logistic regression to predict whether a storm
track will be associated with a severe wind report, a random
forest for the road surface dataset to predict whether a road
will freeze, and a neural network for predicting lightning
flashes.

a. Logistic regression with elastic nets

A logistic regression model is a linear regression model
designed for classification tasks. Given a binary outcome

TABLE 2. Modified from Flora et al. (2021). Input variables from the WoFS. The asterisk (*) refers to negatively oriented
variables. CAPE is convective available potential energy, CIN is convective inhibition, and LCL is the lifting condensation level. The
midlevel lapse rate is computed over the 500–700-hPa layer, and the low-level lapse rate is computed over the 0–3-km layer.
HAILCAST refers to the maximum hail diameter from WRF-HAILCAST (Adams-Selin and Ziegler 2016; Adams-Selin et al. 2019).
The near-surface buoyancy (B) is defined as B5 g(u′e,z50/ue,z50) where g is the acceleration due to gravity, ue,z50 is the lowest model
level average equivalent potential temperature, and u′e,z50(5ue,z50 2 ue,z50) is the perturbation equivalent potential temperature of
the lowest model level. Values in the parentheses indicate those variables are extracted from different vertical levels or layers;
1 mb 5 1 hPa.

Intrastorm Environment

Updraft helicity (0–2 km, 2–5 km) Storm-relative helicity (0–1, 0–3 km)
Cloud-top temp* 75-mb mixed-layer CAPE
0–2-km avg vertical vorticity 75-mb mixed-layer CIN
Composite reflectivity 75-mb mixed-layer LCL
1–3-km max reflectivity 75-mb mixed-layer equivalent potential temperature
3–5-km max reflectivity U shear (0–6 km, 0–1 km)
80-m wind speed V shear (0–6 km, 0–1 km)
10–500-m bulk wind shear 10-m U
10-m divergence* 10-m V
Column-max updraft Midlevel lapse rate
Column-min downdraft* Low-level lapse rate
Low-level updraft (1 km AGL) Temp (850, 700, 500 mb)
HAILCAST max hail diameter Dewpoint temp (850, 700, 500 mb)
Near-surface buoyancy* Geopotential height (850, 700, 500 mb)
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variable y (1 or 0), we can estimate the probability that y be-
longs to a particular class [e.g., P(y5 1|X)] as

P(y 5 1|X) 5 1

1 1 exp 2b0 2 ∑
N

i51
bixi

( ) , (1)

where bi are the learned weights, xi are the features and b0 is
the bias term. Although logistic regression is based on a linear
model, the predicted probability is not linearly related to the in-
put features. Unless the features are binary, binary classification
is inherently nonlinear due to the nonlinear transformation of
continuous features into binary target variables. Given that the
summation in Eq. (1) is an exponent, a multiplicative interaction
exists between all N features. Therefore, the logistic regression
model has questionable interpretability in probability space, es-
pecially as the number of features increases. Regularizations,
both L1 and L2, are used for training. L1 regularization acts as a
feature selection method by zeroing coefficients for less useful
features, while L2 regularization encourages smaller weights,
thereby discouraging the model from heavily favoring a small
subset of features.

b. Random forest

The random forest (Breiman 2001) is an increasingly popular
ML algorithm. A classification random forest is comprised of
multiple decision trees, each partitioning the feature space into
subregions of increasing “purity” (homogeneity of the target
variable). To improve the predictive accuracy of the random for-
est, each tree is trained on a bootstrapped resampled version of
the data, and for each split, only a small random subset of fea-
tures is considered. For each tree, the prediction is the propor-
tion of positive class examples (the number of positive class
examples divided by the total number of examples in the leaf
node). The final prediction of the forest is the ensemble average
of the separate tree predictions.

c. Feed-forward neural network

A standard feed-forward neural network consists of multiple
layers of interconnected nodes, or neurons, organized sequen-
tially. Information flows in one direction, from the input layer to
the hidden layers and then to the output layer. Each neuron in
the network receives inputs from the previous layer and applies a
weighted sum and an activation function (e.g., ReLU) to produce
an output. A binary classification model passes the final output
through a sigmoid function to produce a single probability.

4. Explainability methods

In line with Lipton (2016), Molnar (2020) identifies five
scopes of ML explainability, which can be summarized into
three main categories:

• Algorithmic transparency: How does the algorithm create
the model?

• Global explainability: How does the trained model as a
whole make predictions? How do components of the model
affect the predictions?

• Local explainability: Why did the model make a certain
prediction for a specific set of examples?

Model explainability typically refers to global or local explain-
ability, as algorithmic transparency does not refer to a specific
model or prediction. Both global and local explainability meth-
ods can be summarized as measuring and visualizing:

• Feature relevance and feature importance: The ranking of fea-
tures or sets of features by how much they contribute to a
model’s output or its quality (e.g., Breiman 2001; Lakshmanan
et al. 2015; Greenwell et al. 2018; Lundberg and Lee 2017;
Covert et al. 2020b).

• Feature effects: The expected functional relationship be-
tween a feature (or set of features) and an ML model’s out-
put (e.g., Friedman 2001; Apley and Zhu 2016; Greenwell
et al. 2018; Lundberg and Lee 2017).

• Feature interactions: How a given feature’s effect is depen-
dent on other features and the strength of that effect (e.g.,
Friedman and Popescu 2008; Greenwell et al. 2018; Molnar
et al. 2019; Oh 2019; Kuhn and Johnson 2019).

Global approaches attempt to decompose the model into
parts that can be understood individually (Murdoch et al.
2019; Molnar et al. 2020a). Local approaches explain individ-
ual predictions. Local methods can include but are not limited
to decomposing a prediction into the contribution of each fea-
ture (e.g., Saabas 2014; Ribeiro et al. 2016; Lundberg and Lee
2017) or developing counterfactual explanations to form what-if
scenarios (Molnar et al. 2020a; Molnar 2020). Combining global
and local explainability approaches can provide a holistic under-
standing of the model’s behavior. A summary of the methods
discussed in the following section is given in Fig. 2. Though sev-
eral disparate explainability methods exist, we will discuss how
many of them can be subsumed by one or two approaches.

a. Feature importance versus relevance

Ranking features within a dataset based on their contribu-
tion to the model is a crucial component of model interpret-
ability and explainability. In the literature, feature ranking
methods tend to measure one of three quantities:

1) strength of univariate relationship with the target variable,
2) expected contribution to the model’s output, or
3) expected contribution to the model’s quality.

The first category does not involve the model (e.g., is model
agnostic) and reflects data characteristics, such as correlations
with the target variable or the Kullback–Leibler J measure
(Lakshmanan et al. 2015). Regression coefficients, feature attri-
bution methods [e.g., Shapley additive explanations (SHAP),
tree interpreter, local interpretable model-agnostic explanations
(LIME)], and partial dependence/accumulated local effect vari-
ance (Greenwell et al. 2018) are examples of the second cate-
gory, while the third category includes different variations of
permutation importance (Breiman 2001; Strobl et al. 2008;
Lakshmanan et al. 2015; Au et al. 2021; König et al. 2020;
Covert et al. 2020b), Gini impurity importance (Breiman 2001;
McGovern et al. 2019), Shapley additive global importance
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(SAGE; Covert et al. 2020b), and sequential feature selection
(McGovern et al. 2019).

In general, the first two categories can be defined as meas-
ures of feature relevance, while feature importance is formally
defined with respect to model quality [van der Laan 2006;
Covert et al. 2020b; Hooker et al. 2021; quality is defined as
the correspondence between the model’s output and the target

variable (Murphy 1993)]. We can further separate the notion
of feature importance into model-specific feature importance
and model-agnostic feature importance. Model-specific im-
portance quantifies how much a set of features contributes to
the performance of a given model. In contrast, model-agnostic
importance quantifies the hypothetical range of contributions
in which any well-performing model may rely on a set of

Explainability 
Methods 

Key Ideas Visualizations

Single-Pass 
Permutation 
Importance 

Measures: feature importance by permuting 
(backward)/unpermuting (forward) features one at a time 
Pros: Quick to compute; parallelizable; model-agnostic 
Cons: Highly sensitive to correlated features and does not 
account for multivariate relationships between features. 

Grouped 
Permutation 
Importance

Measures: feature importance by permuting /unpermuting 
multiple features at a time 
Pros: parallelizable; model-agnostic; manually defined 
groups are highly understandable; for mutually exclusive 
groups grouped importance is quick to compute; includes 
feature co-dependencies when computing importance. 
Cons: Automatically defining feature groups is difficult; 
does not replace single-pass permutation importance

Shapley Additive 
Global Importance 

(SAGE)

Measures: feature importance using Shapley theory; 
unifies single-pass and grouped permutation importance
Pros: model-agnostic; global-based version of SHAP; 
computationally quicker than computing SHAP; unifies 
global feature importance methods
Cons: SAGE is limited to loss-based metrics; it’s a new 
method and package so documentation is lacking and 
knowledge of sensitivities is unknown. 

Accumulated Local 
Effects (ALE) and 

Partial Dependence 
(PD)

Measures: global model sensitivity to a feature across the 
full range of its values. 
Pros: quick to compute; parallelizable; model-agnostic; 
ALE is less sensitive to correlated features than PD; both 
can be used for functional decomposition; both can be 
computed for higher-order interactions 
Cons: PD is sensitive to correlated features; ALE can be 
noisy or biased when sample size is low 

SHapley Additive 
Explanations 

(SHAP)

Measures: feature attributions using an approximate 
version of Shapely values
Pros: model-agnostic; only method that assigns 
attributions fairly and satisfies certain desirable properties 
(e.g., additivity, missingness, etc); exact Shapely values for 
tree models (ignore decision paths with missing features)
Cons: slower compute time for a large set of examples or 
features

Local Interpretable 
Model-agnostic 

Explanations 
(LIME)

Measures: feature attributions using the coefficients of a 
local linear model 
Pros: model-agnostic; fast compute time
Cons: attributions do not add to the model’s prediction; 
sensitive to the accuracy of the local model 
approximation; assumes feature independence

Tree Interpreter
Measures: feature attributions using the path of a decision 
tree or forest
Pros: quick to compute ; attributions add to the model 
prediction
Cons: model-specific; can assign lower attributions to 
features higher in the tree; new method (sensitivities are 
relatively unexplored)
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FIG. 2. Explainability methods discussed in this study, their key ideas, and typical visualizations. Methods shaded in gray are unified by
SAGE, and those shaded in red are unified by SHAP.
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features for model performance (Fisher et al. 2018; Covert
et al. 2020b).2 For example, sequential feature selection meas-
ures the importance of a feature by removing or adding a fea-
ture and retraining the model. Situations can arise where, due
to compensatory effects, one seemingly important variable is
removed, and the model adjusts using the remaining variables
(Kuhn and Johnson 2019). Therefore, sequential feature selec-
tion approximates model-agnostic feature importance. There
are alternative variations on the “remove and retrain” approach
where the feature is marginally or conditionally permuted and
the model retrained to determine importance (Hooker et al.
2021), but these approaches are often computationally expen-
sive. The most common way to measure model-specific fea-
ture importance is the permutation importance method,
which evaluates the change in model performance after per-
muting a feature’s values. Permuting a feature maintains its
marginal distribution but breaks up the relationship with the
target variable. The general drawback to this approach is that
marginally permuting a feature’s values alters the conditional
joint distribution among features. Breaking up conditional distri-
butions can cause the importance scores to be heavily impacted
by out-of-distribution or unphysical samples (Hooker et al.
2021). However, permutation importance methods that attempt
to maintain conditional distributions are either restricted to spe-
cific ML algorithms (e.g., random forests; Strobl et al. 2008) or
computationally restrictive (Hooker et al. 2021) and inevitably
impact the interpretation of the results (Molnar et al. 2020b).

b. Shapley-based methods and the unification of
explainability methods

A promising approach for model explainability is to think of
the model’s output or quality as a sum of contributions (f) from
each feature (N features) (Lundberg and Lee 2017; Covert et al.
2020b):

model output or quality 5 bias 1 f1 1 f2 1 · · · 1 fN: (2)

The idea is that the bias (e.g., the base rate for feature relevance
or the accuracy of a climatological prediction for feature impor-
tance) is a starting point, and each feature contributes positively
or negatively until the final score (output or quality) is achieved.
The simplest way to compute f for a given feature is computing
the difference in model output after “removing” the feature
(i.e., marginalizing it out by replacing its value with a random
value from the training distribution). This approach, however, is
not “fair” to a given feature as it does not account for feature in-
teractions. To ensure fairness, we would need to compute the
difference in output when a feature is included and not included
in a feature subset for all possible feature subsets (Fig. 3). The
theoretical idea behind this approach comes from game theory

and scores known as Shapley values (Shapley 1953). For contri-
butions to model output, fi in Eq. (2) is known as the SHAP
value, while for model quality, it is known as the SAGE value.
As a reminder, SHAP is computed for a single example (local
explainability), while SAGE is computed over a dataset (global
explainability).

What does it mean to say Shapley values are “fair”? For
fair values, they must satisfy the following axioms:

1) Local accuracy (additivity): The sum of the contributions of
each feature plus the bias must equal the final outcome.

2) Consistency (monotonicity): If an ML model changes so
that the marginal contribution of a feature increases or
stays the same, the feature attribution must also increase
or remain the same, respectively.

3) Missingness: Missing features (e.g., features that have
been marginalized out) must have a zero contribution to
the model.

The Shapley values are the only method that satisfies all three
of these properties (Shapley 1953; Young 1985; Lundberg et al.
2018, 2020).

Except for tree-based methods and low-dimensional data-
sets, computing exact Shapley values is intractable as it re-
quires creating N! possible feature subsets. Another issue is
appropriately accounting for missing features. Typically, their
values are replaced with samples from their marginal distribu-
tion to approximate missing features. This approach is re-
peated multiple times for different samples to improve the
estimation of their “missingness.” For this study, we use the
default permutation-based method in the SHAP package. This
method creates many feature order permutations and then, for
each feature ordering, iterates completely through the features
in both the forward and reverse directions. Though approxi-
mate, this approach guarantees local accuracy (additivity) and
allows for feature clustering (using SHAP’s partition masker),
which improves the Shapley value estimates when features are
correlated/colinear.

We can group the features into coalitions (feature groupings)
and compute an extension of the Shapley values known as Owen
values (Owen 1977; López and Saboya 2009). To compute the
Owen value for xj, we compute the weighted average change in
prediction when xj is included and not included in all possible
feature subsets, but such that the subsets exclude features from
one grouping. We repeat the calculation with each feature group-
ing excluded and average those values. For example, let us
consider the road surface dataset, which has multiple tempera-
ture- and radiation-based features. In one iteration, we might cre-
ate a feature subset of just temperature variables and measure
the impact of including and excluding surface temperature. In
the next iteration, we would exclude the temperature variables,
include all the radiation variables, and again measure the effect
of including and excluding surface temperature. Though we are
creating distinct feature groupings, the outcome is a unique con-
tribution from each feature. Another key benefit of the Owen
values is that the number of feature subsets to evaluate is signifi-
cantly reduced. For the remainder of the paper, we will refer to
the Owen values as SHAP values. We compute the SHAP values

2 The idea of model-specific importance and model-agnostic im-
portance is referred to as model-based predictive power and uni-
versal predictive power in Covert et al. (2020b). Fisher et al.
(2018) loosely refers to the notion of model-agnostic importance
with the idea ofmodel class reliance: the highest and lowest degree
to which any well-performing model with a given class may rely on
a predictor for prediction accuracy.
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on 2500 random samples from each training dataset to capture
the global aspects of each model.

Though several disparate explainability methods exist in
the literature, many can be unified using the Shapley-based
approach (Lundberg and Lee 2017; Covert et al. 2020b,a, their
Fig. 2). Many explainability approaches are based on simulat-
ing the effect of feature removal, which Covert et al. (2020a)
demonstrated is implicitly tied to the cooperative game theory
that Shapley methods are based on. For example, the LIME
(Ribeiro et al. 2016) method fits a linear model on perturba-
tions of the dataset around the example to be explained and
uses the model coefficients to generate the individual feature
contributions in Eq. (2). The “width” of the local area where
the perturbations are generated is dictated by a kernel func-
tion (often exponential). Using the kernel method outlined in
Lundberg and Lee (2017), the LIME values become approxi-
mate SHAP values. The LIME method, however, cannot
guarantee local accuracy, is prone to providing misleading ex-
planations when features are correlated, and is subject to the
accuracy of the local linear model. A less well-known method,
tree interpreter (Saabas 2014; Loken et al. 2022), can provide

feature contributions for tree-based methods. Still, it only
considers a single feature ordering and has consistency issues
as features near the root can incorrectly be given less weight
(Lundberg et al. 2020). Ultimately, it is unnecessary to com-
pute tree interpreter values as exact Shapley values can be
computed for tree-based models, and the computation times
for tree interpreter and the tree-based SHAP method are
comparable (Lundberg et al. 2020).

SAGE (Covert et al. 2020b) also unifies the existing permu-
tation importance methods for measuring feature importance.
Permutation importance is one of the most popular methods
for assessing feature importance. It was first introduced in
Breiman (2001) but was later expanded in Lakshmanan et al.
(2015) and generalized in König et al. (2020); Au et al. (2021).
The main goal of permutation importance is to measure the
expected model quality when the values of a single feature
are permuted. Permuting a feature’s values renders it uninforma-
tive of the target variable but maintains the marginal distribution
so as not to introduce output bias. The feature is considered un-
important if the expected model quality is relatively unchanged
after the feature values are shuffled. When repeated for each

FIG. 3. Annotated illustration of the (left) SHAP and (right) SAGE computation.
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feature, this method is known as the single-pass permutation im-
portance (McGovern et al. 2019). Generally, one could permute
any number of features to evaluate their importance to the model,
known as grouped permutation importance (Au et al. 2021). By
permuting multiple features, we better account for feature code-
pendencies (Lakshmanan et al. 2015; Gregorutti et al. 2015). For
example, numerous studies have found that when features are
correlated, their single-pass permutation importance scores can
be reduced (Strobl et al. 2007, 2008; Gregorutti et al. 2015, 2017).
Furthermore, when permuting more than one feature, the total
importance is not equal to the sum of their individual importan-
ces, as it also depends on the codependencies between the fea-
tures (Gregorutti et al. 2015). Though evaluating the output
of the different permutation importance methods can be useful,
SAGE unifies all preexisting permutation importance-based
methods by systematically assessing the impact of withholding
multiple feature subsets (Fig. 2) and using a Shapley-style equa-
tion (Fig. 3).

c. Accumulated local effects

Computing SHAP values for all training set samples is often
unduly computationally expensive. To complement SHAP, we
measure global feature effects using accumulated local effects
(ALE; Apley and Zhu 2016), which is an alternative to partial
dependence (PD; Friedman 2001) that properly accounts for
feature codependencies. The ALE for the feature xj is

ALEj(xj) 5
�xj

min(zj)
E
f (X)
Xj

|Xj 5 zj

[ ]
dzj 2 c, (3)

where f is the ML model, X is the set of all features, zj are the
values of xj, and c is the integration constant. The constant c is
the mean of ALE(xj), so the mean feature effect is zero.

ALE computes the expected change in prediction over a se-
ries of conditional distributions for a given feature and then ac-
cumulates (integrates) them to return the feature effect. By
computing the average change in prediction over a series of
small windows, ALE isolates the impact of the feature from the
effects of all other features and avoids the pitfall of PD, which
can suffer from unlikely or nonphysical combinations of feature
values. More details on the ALE calculation are provided in
Molnar (2020) and Flora (2020). For this study, we compute the
ALE on the same 50000 random samples from each training da-
taset used for the SAGE computation.

To aid in interpreting the feature effects, we compute the con-
ditional base rate per feature [i.e., p(y 5 1|xi)] using a Bayesian
histogram method (Python package bayeshist; Hafner 2022). This
method assumes a beta distributed prior [p(y5 1)’ B(a, b)
where a and b are shape parameters] and a similar distribution
for the posterior [p(y5 1|n1i , n2i )’ B(a 1 n1i , b 1 n2i )] where
n1i , n

2
i are the number of positive and negative samples in the ith

bin, respectively. By binning feature xi’s values, we can compute
B in a series of quantiles. The method compares and combines
each pair of neighboring bins if they are likely from the same
event rate sample. The final output is a conditional base rate

distribution for each bin, which allows us to show the median
value and 95% confidence intervals.

d. Training or testing dataset for explainability?

According to Molnar (2020, their section 5.5.2), favoring the
training or testing dataset for feature importance or relevance
remains an open question. Lakshmanan et al. (2015) argued for
only using the training dataset. The goal of measuring feature
importance is quantifying how the model relies on each feature
and not how well the model generalizes to unseen data. Gener-
ally, the testing dataset’s conditional distribution is unlikely to
fully represent the training conditional distribution. If the ML
model learned a pattern in the training dataset that is under-
represented in the testing dataset, then evaluating feature
importance on the testing dataset can bias our understand-
ing of how the model works. For example, consider an imag-
inary scenario where the training dataset has temperature
ranges from 2158 to 108C, whereas the testing dataset range
is from 258 to 58C. If the ML model learned to rely heavily
upon temperatures , 2108C to predict freezing road surfaces,
we would fail to determine that using the testing dataset. One
could evaluate the feature importance on training and testing
data to identify any discrepancies. Still, it would be necessary
to ascertain whether the differences are due to poor sampling
or overfitting. To avoid these difficulties, feature importance
in this tutorial is evaluated using the training dataset.

5. Demonstration of explainability methods

a. General approach to model explainability

This section will outline a general strategy for explaining an
ML model. Our first step is to analyze the most relevant and im-
portant features. By examining the discrepancies (or agreements)
between these two rankings and the learned relationships, we can
improve our understanding of the model and identify strengths or
weaknesses. We limit this section to the road surface dataset as it
has the fewest features and is the most intuitive prediction task of
the three datasets.

The SHAP and SAGE feature rankings for the road surface
dataset are shown in Fig. 4, and the learned effects of the top six
most important features are shown in Fig. 5. Figure 4a displays
the features ranked by their mean absolute SHAP value. Each
feature is represented by a scatterplot color coded by the normal-
ized feature value, and density can be approximated by vertical
spread. This plot allows a more comprehensive interpretation of
feature rank and effect. For example, Tsfc SHAP values display a
bimodal distribution, with negative values for higher temperatures
and positive values for moderate to low temperatures, with a
sparse density in between. We interpret SHAP values as an in-
crease or decrease in the model prediction compared to the global
average model prediction. For example, a cold surface tempera-
ture can increase the probability of a freezing road surface by
10%–15% given the static base rate of 40%. The SHAP values
may not be as helpful for predictions near the base rate. We inter-
pret the SAGE values similarly: the decrease or increase in model
performance compared to simply predicting the base rate. Suppose
the model is near-optimal (i.e., a Bayesian classifier). In that case,
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we can also interpret SAGE values as conditional mutual informa-
tion or how informative a feature is of the target variable given the
other features in the dataset. When analyzing importance, it is cru-
cial to remember that features can have lower importance due to
their information already being included in other features, which
may be more informative of the target variable.

The learned effect plots in Fig. 5 are dense but include multiple
useful details:

• Black curve: Average first-order effect}the direct contribu-
tion of a single feature independent of the other features}as
measured by the ALE method.

• Scatter points: SHAP values as a function of a feature’s
value.

• Dashed red curve: Conditional base rate measured by the
Bayesian histogram method described in section 4c.

• Rug plot on the bottom: The approximate distribution of the
feature values (higher density equates to more samples).

By combining the ALE curve with SHAP dependence
plots, we can better understand how changes in a feature’s
value affect the model predictions on average and for specific
examples. For instance, the ALE curve highlights the average
first-order effect, while the vertical spread of SHAP values for

a specific feature value reveals the impact of higher-order ef-
fects. The scatter points are color coded based on the values of
one of the most important features, which helps identify poten-
tial feature interactions. When exploring relevant higher-order
effects, we use the strong heredity principle from Kuhn and
Johnson (2019): “interaction terms may only be considered if
the [first order] terms preceding the interaction are effective at
explaining [the target variable].” The idea is that if a feature has
a weak first-order effect, it is unlikely to be included in a mean-
ingful second-order or higher effect. To estimate the strongest
interaction with the most important feature, we bin the SHAP
values of the most important feature by the feature values of all
other features and use the feature with the highest linear corre-
lation coefficient. Potential interaction effects should be inter-
preted cautiously, as some may be spurious compensation
effects (e.g., probabilities cannot exceed 1) or arise from feature
correlations, as shown below.

The most relevant and important features are physically
plausible for predicting freezing road surfaces (Fig. 4). For
example, the surface temperature is the most relevant and
important feature (Tsfc) as cooler surface temperatures, espe-
cially ,22.58C, are highly likely to be associated with freez-
ing road surfaces (Figs. 4a and 5a). The duration of freezing

FIG. 4. (a) SHAP and (b) SAGE feature rankings for the road surface dataset. For (a), scatter points are SHAP val-
ues, while the color coding indicates the minimum-maximum normalized feature value (0–1). To approximate a
violin-style plot, vertical spread is applied to dense regions. Features for the SAGE rankings are color coded by type:
temperatures in blue, radiation in green, cloud coverage in purple, and remaining orange.
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temperatures and date marker (absolute distance from 10 January)
are also intuitive features for predicting freezing road surfa-
ces. The learned relationships could be treated as forecasting
rules of thumb. For example, the likelihood of freezing road
surfaces greatly increases if surface temperatures have been
below 08C for at least 12.5 h (Fig. 5c). However, freezing tem-
peratures for longer than 12.5 h do little to increase the odds
of a frozen road surface as freezing temperatures for longer
than 12.5 h were associated with an average surface tempera-
ture of 268C (21.28F). Road surfaces in the dataset were al-
ways frozen at those temperatures, so freeze duration adds
little information. Last, there is possibly an erroneous inter-
action between surface temperature and freezing duration
(Fig. 5c). There is a dichotomous effect where warmer tem-
peratures can either increase or decrease the impact of freez-
ing durations between 12 and 24 h. This result may point to a
model deficiency deserving further attention or the influence
of a third variable that could be identified and explored by
feature interaction methods like SHAP interaction values
(Lundberg et al. 2018).

Though the most relevant features are generally also the most
important, some differences between the rankings provide in-
sights into the model and the physical processes involved. For
example, the date marker is tied for the most relevant feature
(Fig. 4a), but its importance is less than half that of the most im-
portant feature. Based on Figs. 4a and 5e, being further from
10 January significantly decreases the probability of a frozen
road surface, which is physically reasonable as temperatures are
climatologically warmer throughout the CONUS during the
Fall/Spring season and unlikely to produce frozen roads. Con-
versely, frozen road surfaces as we approach the middle of win-
ter become almost certain for parts of the CONUS. While the
date does provide a general indication of the season and, thus,
broad climatological patterns, it does not account for the vari-
ability of specific weather conditions that lead to road freezing,
such as sudden cold fronts or snowfall. Thus, a date maker is an
excellent feature for predicting nonfrozen road surfaces but less
useful for frozen roads.

It may be surprising that many of the radiation-based varia-
bles have low/near-zero importance (Fig. 4b) as energy fluxes

FIG. 5. (a)–(f) Feature effects plots for the top six most important road surface dataset features. The ALE curve is black, while the scat-
ter points are SHAP values. The red histogram plateaus indicate the conditional base rate, and the 95% uncertainty region with its values
are on the right y axis. The rug plot on the bottom of each panel indicates the approximate distribution. Scatter points are color coded by
the surface temperature values, except for the surface temperature in (a), which is color coded by the feature with the strongest approxi-
mate interaction. Vertical dispersion of SHAP values indicates feature interactions.
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at the surface are the primary driver of road surface condi-
tions (Crevier and Delage 2001). For example, at nighttime
with near clear skies, radiation away from the surface can pro-
mote rapid cooling (Crevier and Delage 2001). Unfortunately,
capturing these higher-order effects is difficult for traditional
ML models, especially random forests, which select from a
random set of features for each split, decreasing the odds of
detecting higher-order effects (Wright et al. 2016). Further-
more, using individual radiation terms instead of the total
radiation budget could reduce importance and relevance. Finally,
recall that the road surface dataset is a 1-h nowcasting dataset
composed of numerical weather prediction (NWP)-derived
variables. Thus, the surface and 2-m temperature values re-
flect radiation-based changes due to the surface and radiation
parameterization schemes. Moreover, the radiation features also
contain information about cloud coverage, explaining why those
features have lower importance and relevance. Thus, the surface
temperature variable incorporates much of the information from
the cloud coverage and radiation variables and is more strongly
correlated with the target variable (i.e., whether the road is fro-
zen). Nevertheless, the MLmodel can still derive nonzero impor-
tance from the radiation terms, as the temperature and radiation
features are only partially redundant due to the influence of
other variables and imperfections in the radiation parameteriza-
tion scheme.

b. Impact of correlated features on model explainability

It is a well-known issue that correlated features can signifi-
cantly impact model explainability methods, especially those
that use permutation-based approaches (Strobl et al. 2007,
2008; Gregorutti et al. 2015, 2017; Hooker et al. 2021; Molnar
et al. 2021). In this section, we will use the lightning dataset to
demonstrate how correlated features can impact feature im-
portance and relevance scores and provide a complementary
approach where feature importance/relevance is assessed
based on feature groupings rather than individually.

Correlated features can impact both feature importance
and feature relevance. It is well known that for models like lo-
gistic regression or neural networks, the model coefficients
are nonunique when two features or more are linearly depen-
dent (Gregorich et al. 2021). In the case of two highly corre-
lated features, the model can either learn to favor one or the
other (through regularization) or keep both, but with opposite
signs as a compensation effect. To demonstrate this effect,
Fig. 6 shows the SHAP and SAGE feature rankings for the
lightning dataset. One discrepancy is that WV1st is a highly
relevant feature (ranked 8th) but much less important (lowest
rank). The learned effect for WV1st opposes the base rate and
can be a strong effect for higher WV temperatures (Fig. 7f).
Recall that different feature sets are permuted for the SAGE
calculation; some of these sets exclude most of the features.
In these situations, compensating features like WV1st will be
heavily penalized (lower importance) as their benefit to the
model is contingent on one or more other features. Thus, the
negative SAGE score, but higher mean absolute SHAP val-
ues is indicative of a compensating effect. Without the other
features, the learned relationship WV1st worsens the model as

it does not reflect the underlying dataset (the same argument
can be made for WV10th).

Feature correlations impact model explainability because
correlated features can lead to shared relevance, which can
obscure the individual impact of each feature on the model’s
output or quality. Therefore, a useful alternative to analyzing
individual features is to group them to avoid misinterpreting
the model’s behavior or the true feature–target relationship.
By doing so, we can capture collective effects rather than iso-
lating the influence of individual feature variations on the
model’s output. Figure 8 revisits the analysis of the road sur-
face dataset and shows the grouped SHAP and SAGE rank-
ings, which are obtained by summing together the SHAP/
SAGE values for features in each group. To normalize the fea-
ture values for each group, we scale the features using minimum–

maximum normalization and then compute the average scaled
feature value.

Based on the grouped SHAP and SAGE rankings, the
freezing duration features (see Table 3) are the most relevant
and important, while radiation variables have much less rele-
vance and importance. This is not inconsistent with top indi-
vidual features in Fig. 4 but provides a concise picture of the
model’s behavior. For example, when grouped together, the
radiation features are important but produce lower SHAP
values than the temperature variables. We can similarly sum-
marize the feature groups in the lightning dataset (Fig. 9).
Though VILmax was the single most important feature (Fig.
6b), the IR features are the most relevant and important over-
all, and the importance of WV and VIS are nonzero but mini-
mal. The lightning probability is more sensitive to VIL than
IR, as can be seen with the strong bimodal distribution
among the SHAP values and the sharp slope of the ALE
curve for VIL (cf. Figs. 7a,c). Spatially, VIL contains highly
localized variables (high values associated with storms);
therefore, it is reasonable that it would have a highly dichoto-
mous impact on the model. However, the lightning dataset
has an even class balance, and the IRmin substantially lowers
the lightning probabilities, increasing its importance. If the
dataset had a more representative lightning climatology (in-
cluding more nonevents), VIL would likely have higher im-
portance than IR.

c. Using explainability to diagnose model weaknesses

In the sections above, we have found that the most relevant
and important features of the road surface and lightning ML
models in this study are physically plausible. Likewise, one
would be hard pressed to find issues with the top features of
the severe wind dataset (e.g., 80-m wind speed, composite re-
flectivity, and cloud-top temperature) as each represents con-
vection intensity and low-level wind flow (Fig. 10). However,
are the least important features also reasonable? In this case,
many of the negative importance features are likely to have
high model-agnostic feature importance but are negatively
impacted by correlated features [Fig. 10b; e.g., 0–1-km storm-
relative helicity (SRH) vs 0–3-km SRH, updraft vs hail, com-
posite reflectivity vs 3–5-km maximum reflectivity]. One
exception is downdraft, which is strongly correlated with other
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features (e.g., 10-m divergence), but none of those features are
ranked highly. Thus, the negative importance of downdraft
speed does not appear to arise from compensatory features.
One primary generation mechanism for severe convective winds
is a strong downdraft (either a downburst or a supercell rear-
flank downdraft), so one might expect this feature to be highly
important. Figure 11 shows the learned relationships for the
downdraft and 80-m wind speeds. For both features, the learned
relationship matches the base rate trend, and for 80-m wind
speeds between 30 and 40 kt (1 kt ’ 0.51 m s21) and downdraft
speeds between27 and26 m s21, the base rates are similar, but
strong downdrafts (,27 m s21) do have a lower base rate. We
know that strong downdrafts are more common over the Great
Plains (Romanic et al. 2022) and, unfortunately, we are more
likely to miss severe wind reports in that region as well (Trapp
et al. 2006). While we acknowledge that there are other mech-
anisms for generating severe near-surface winds, we hypothe-
size that missing reports may have lowered the base rate for
stronger downdrafts and negatively impacted this feature’s
importance. Our analysis highlights the importance of under-
standing model/data deficiencies to avoid misinterpreting
feature importance. Other studies such as Clare et al. (2022)
already recognize the need to rely on intuition from physical
theory when evaluating the trustworthiness of XAI methods.
Being aware of the model deficiencies can identify areas for

model improvements or could be presented to the end user.
For example, we could inform forecasters that strong downdrafts
do not explicitly translate to higher severe wind probabilities
with the current model.

d. Using explainability to monitor an ML model

Until this point, we discussed how to use explainability to
understand ML models that are known to perform well. How-
ever, we can also use explainability to debug models during
development or monitor a model in operations. For example,
imagine a scenario where the road surface model runs during
winter. Let us assume the temperatures are near freezing over
the northern CONUS and have been for a while, so frozen
road surface probabilities should be near 100%. However, we
find that output for northern Michigan is closer to 40%. Ana-
lyzing a SHAP waterfall plot shows how each feature contrib-
utes to a single prediction (Fig. 12). This plot displays the
base rate, the final prediction, and how each feature “forces”
the prediction away from the base rate (either positively or
negatively). In this toy example case, the surface temperature
lowers the probability of a frozen road surface by eight per-
centage points, which is unexpected. On further inspection, an
alert user would see that the surface temperature is rather
warm at 298C (848F); the issue is likely wrong units! During
model development, it is possible to introduce unit mismatches;

FIG. 6. As in Fig. 4, but for the lightning dataset. VIL features are in gold, IR in red, WV in blue, and VIS in black.
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the authors have used waterfall plots to diagnose unit errors for
the quasi-operational MLmodels used in theWoFS. We can sim-
ilarly use SAGE rankings to diagnose dataset errors (Fig. 13).
The temperature variables (Td, Tsfc, and T2m) have near-zero

importance, which is physically implausible and is also associated
with the wrong units. This type of analysis is useful during the
model development period to identify potential issues with the
dataset.

FIG. 7. As in Fig. 5, but for the lightning dataset.

FIG. 8. As in Fig. 4, but for feature groups in the road surface dataset.
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6. Summary

Motivated by the increasing interest in explaining machine
learningmodels, this study synthesizes recent research on explain-
ability methods for traditional MLmodels. Our goal is to provide
a tutorial for using thesemethods to accelerate the adoption of ex-
plainability methods within atmospheric and other environmental
sciences. This includes distinguishing explainability from inter-
pretability (Fig. 1), local versus global explainability, and feature
importance versus feature relevance. We demonstrate visualiza-
tions of the different explainability methods, how to interpret
them, and provide a comprehensive Python package (Flora and
Handler 2022) to enable other researchers to use these methods.
The explainability methods covered in this tutorial are largely
Shapely based as these methods unify many preexisting methods.

In fact, all removal-based explanation methods are implicitly tied
to cooperative game theory, the foundation of Shapley values.
Local attributions methods like LIME (Ribeiro et al. 2016) and
tree interpreter (Saabas 2014) are unified by SHAP, while global
feature importancemethods like single-pass andmultipass permu-
tation importance (McGovern et al. 2019) and grouped and rela-
tive feature importance (Au et al. 2021; König et al. 2020) are
unified by SAGE.

To demonstrate the SHAP and SAGEmethods, we applied
them to three disparate datasets: a convection-allowing model
dataset for severe weather prediction, a nowcasting dataset
for subfreezing road surface prediction, and satellite-based
data for lightning prediction. We demonstrated a general
approach to explaining an ML model. This process includes

TABLE 3. Modified from Handler et al. (2020). Input features to the random forest for the road surface dataset. Terms are listed as
follows: surface (SFC), radiation flux (RF), solar flux (SF), heat flux (HF), longwave (LW), shortwave (SW), and cloud coverage
(CC).

Temperature Radiation CC Freezing duration Other

SFC (Tsfc) Incoming SW RF (S) Total (Ctotal) Hours T2m # 08C SFC friction velocity (Vfric)
2-m (T2m) Visible downward SF (Vbd) Low (Clow) Hours T2m $ 08C SFC roughness (SR)
2-m dewpoint (Td) Upward LW RF (l↑) Mid (Cmid) Hours Tsfc # 08C 10-m wind speed (U10m)
DT2m 2 Tsfc (HRRRdT) SFC latent HF (Lhf) High (Cmid) Hours Tsfc $ 08C Urban HRRR land

classification
SFC sensible HF (Shf) Absolute distance from

10 Jan
Rural HRRR land

classification
Visible diffuse downward

SF (l_)
Ground flux (G)
Simulated brightness

temp (Tirbt)
DS 2 l↑
DS 2 l_
DG 2 Shf
DG 2 Shf

FIG. 9. As in Fig. 4, but for feature groups in the lightning dataset.
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examining discrepancies (or agreements) between the most
relevant and important features and the learned relationships.
Feature relevance measures the contribution of a feature to
the model’s prediction, while feature importance measures
the contribution to the model’s performance. By exploring
both, we can identify the strengths and weaknesses of the
model, which is a first step toward building trust in the model.

Next, we demonstrated how feature correlations can nega-
tively impact feature relevance and importance. For example,
feature correlations can result in learned feature–target rela-
tionships having the wrong sign due to a compensating effect
for models like logistic regression and neural networks. When
strongly correlated features are present, SAGE assigns nega-
tive importance to these features as their learned relationship

FIG. 10. As in Fig. 4, but the severe wind dataset.

FIG. 11. As in Fig. 5, but the severe wind dataset.
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degrades the model performance if the features they are cor-
related with are absent.

We demonstrate grouped feature relevance and feature impor-
tance as methods to mitigate the impacts of correlated features.
Rather than analyzing features individually, we can evaluate their
collective impact on the model prediction or performance. We
showed how to use explainability methods to diagnose model
weaknesses. We found that downdraft speed had low importance
in the severe wind model despite strong downdrafts being associ-
ated with a higher likelihood of severe winds. The learned rela-
tionship was consistent with the severe wind base rates for strong
downdraft speeds. However, we suspect these base rates are
underestimated as strong downdrafts are more common over the
Great Plains, where underreporting of severe wind is more likely.
Last, we demonstrated how explainability methods can be used
to monitor models in real time to identify spurious predictions
(e.g., due to incorrect feature units).

There are some caveats to the ML model explainability ap-
proach demonstrated in this paper. First, though Shapely values
are a powerful and theoretically sound method, they have limita-
tions. As model complexity increases, feature contributions to
the model prediction and performance may be nonadditive and,
therefore, could provide a poor explanation of model behavior
(Gosiewska and Biecek 2019; Kumar et al. 2020). Second,
though Shapley values can provide critical insights into model
behavior, translating the values into an end-user explanation is
not straightforward (Kumar et al. 2020). Kumar et al. (2020)
provides multiple possible approaches to translate Shapley-
based results into a human-centric explanation, but further work
is needed in this area. Third, in addition to the important fea-
tures and their first-order effects, it is crucial to consider feature

interactions. Feature interactions describe how two or more pre-
dictors work together to influence the performance of the ML
model. However, measuring feature interactions can be chal-
lenging, and more work must be done to evaluate them accu-
rately. One comprehensive set of metrics for assessing feature
interactions, developed by Friedman and Popescu (2008), in-
cludes various statistics that describe the departure of second-
order effects from the additive effect between two predictors.
There are also SHAP-based methods for computing interaction
values (Lundberg et al. 2018). However, feature interaction ex-
plainability methods can be computationally intractable for
more than two features, and distinguishing the significance of
second or higher-order interactions from noise or correlations
can be prohibitively difficult.

Explaining an ML model is an involved process. Properly ex-
plaining any ML model requires a solid understanding of the un-
derlying algorithm, a thorough knowledge of the data, and the
limitations of traditional supervisedML approaches. Understand-
ing the dataset’s features, distribution, and relationships with the
target variable is crucial. Furthermore, appreciating the limits of a
supervisedML approach is indispensable. Supervised learning as-
sumes a good signal-to-noise ratio with minimal label uncertain-
ties, which is unrealistic for atmospheric science datasets. And the
relevant and important features of the models generated from
these data may or may not reflect the actual data-generating pro-
cess. Explainability methods allow us to determine if the ML
model learned meaningful relationships and identify possible
model deficiencies. By recognizing these deficiencies, we can cor-
rect them or, at the very least, present them to the end user as a
means to establish trust. By thoroughly explaining the model, in-
cluding its strengths andweaknesses, we can help users understand

FIG. 12. A waterfall plot where red arrows indicate positive SHAP values and blue arrows in-
dicate negative SHAP values. Contributions are ranked by their absolute magnitude, and feature
values are provided on the left-hand side. The E[ f(x)] is the bias term from Eq. (2) and will equal
the base rate.
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when and why they should trust the model’s predictions, foster-
ing a more meaningful and productive relationship between the
users and theAI tools they use.
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